

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

SCons Documentation Toolchain

Introduction

This text tries to give an overview of the current SCons documentation toolchain.
The interested user should be able to better understand where and how the text he writes
is processed.
It is also a reference for core developers and the release team.

[image: images/overview.png]
The diagram above roughly shows the steps that we currently need for creating all the MAN pages, User manuals and
reference documents. You may think: “Geeez, that looks so complicated. Why can’t they
simply convert XML files to PDF with Docbook, or use reST?” Please be patient, and
continue reading. Things will get a little clearer soon.

Our toolchain doesn’t only produce HTML and PDF files that are nice to look at, it also performs a lot
of processing under the covers. We try to have our documentation as consistent as possible to the
current behaviour of the source code, but this requires some extra steps.

So let’s start right at the top…

Writer’s view

The toolchain is set up, such that the User has a very restricted view on this whole “document
processing thingy”. All he should be concerned about is to edit existing text or write new sections
and paragraphs.
Sometimes even a completely new chapter has to be added, in general he can fire up his XML editor of choice
and type away.

If he is a really nice user, he cares about validating his XML files against our special
“SCons Docbook DTD/XSD”. Either during typing, supported by his XML editor, or by executing a special
script

python bin/docs-validate.py

from the top source folder afterwards. Preferably both.

Everything’s looking okay, all validation passed? Good, then he simply commits his new work, and
creates a pull request on Bitbucket. That’s it!

Additionally, he can create the single documents on his side if he wants to get a feel for how the
final result looks (and who doesn’t?). Each of the document folders (design, developer, man,
python10, reference, and user) contains an SConstruct file along with the actual
XML files. You can call

python ../../src/script/scons.py

from within the directory, and have the MAN pages or HTML created…even PDF, if you have a
renderer installed (fop, xep or jw).

Validation

Just a few more words about the validation step.
We are using our own DTD/XSD as a kind of hook, which only exists to link our own
SCons documentation tags into the normal Docbook XSD. For the output, we always
have an intermediary step (see diagram above), where we rewrite tags like cvar
into a block of Docbook formatting elements representing it.

The toolchain, and all the Python scripts supporting it, are based on the prerequisite that
all documents are valid against the SCons Docbook XSD. This step guarantees that we can
accept the pull request of a user/writer with all his changes, and can create the documentation
for a new release of SCons without any problems at a later time.

Entities

We are using entities for special keywords like SCons that should appear with the same
formatting throughout the text. These are kept in a single file doc/scons.mod which gets
included by the documents.

Additionally, for each Tool, Builder, Cvar and Function, a bunch of linkends in the form of
entities get defined. They can be used in the MAN page and the User manual.

When you add an XML file in the src/engine/Tools folder, e.g. for a tool named foobar,
you can use the two entities

	t-foobar

	which prints the name of the Tool, and

	t-link-foobar

	which is a link to the description of the Tool in the Appendix

of the User guide’s text.

By calling the script

python bin/docs-update-generated.py

you can recreate the lists of entities (*.mod) in the generated folder, if required.
At the same time, this will generate the *.gen files, which list the full
description of all the Builders, Tools, Functions and CVars for the MAN page
and the guide’s appendix.

For more information about how to properly describe these elements, refer to
the start of the Python script bin/SConsDoc.py. It explains the available
tags and the exact syntax in detail.

Examples

In the User Guide, we support automatically created examples. This means that the output of the specified
source files and SConstructs, is generated by running them with the current SCons version.
We do this to ensure that the output displayed in the manual, is identical to what you get when you run
the example on the command-line.

A short description about how these examples have to be defined, can be found at the start of the file
bin/SConsExamples.py. Call

python bin/docs-create-example-outputs.py

from the top level source folder, to run all examples through SCons.

Before this script starts to generate any output, it checks whether the names of all defined examples are
unique. Another important prerequisite is, that for every example all the single scons_output blocks need to have
a suffix attribute defined. These suffixes also have to be unique, within each example.

All example output files (*.xml) get written to the folder doc/generated/examples, together with all files defined
via the scons_example_file tag. They are put under version control, too. Like this, it is easier to compare
whether the output got broken for a new version of SCons.

Note, that these output files are not actually needed for editing the documents. When loading the User manual into an XML
editor, you will always see the example’s definition. Only when you create some output, the files from
doc/generated/examples get XIncluded and all special scons* tags are transformed into Docbook elements.

Directories

Documents are in the folders design, developer, man,
python10, reference, and user.

	editor_configs

	Prepared configuration sets for the validating WYSIWYG XML editors
XmlMind and Serna. You’ll probably want to try the latter, because
the XXE config requires you to have a full version (costing a few
hundred bucks) and is therefore untested. For installing the Serna
config, simply copy the scons folder into the plugins
directory of your installation. Likewise, the XXE files from the
xmlmind folder have to be copied into ~/.xxe4/ under Linux.

	generated

	Entity lists and outputs of the UserGuide examples. They get generated
by the update scripts bin/docs-update-generated.py
and bin/docs-create-example-outputs.py.

	images

	Images for the overview.rst document.

	xsd

	The SCons Docbook schema (XSD), based on the Docbook v4.5 DTD/XSD.

	xslt

	XSLT transformation scripts for converting the special SCons
tags like scons_output to valid Docbook during document
processing.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

